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This paper reviews hierarchical observation models,
used in functional neuroimaging, in a Bayesian light.
It emphasizes the common ground shared by classical
and Bayesian methods to show that conventional anal-
yses of neuroimaging data can be usefully extended
within an empirical Bayesian framework. In particu-
lar we formulate the procedures used in conventional
data analysis in terms of hierarchical linear models
and establish a connection between classical infer-
ence and parametric empirical Bayes (PEB) through
covariance component estimation. This estimation is
based on an expectation maximization or EM algo-
rithm. The key point is that hierarchical models not
only provide for appropriate inference at the highest
level but that one can revisit lower levels suitably
equipped to make Bayesian inferences. Bayesian in-
ferences eschew many of the difficulties encountered
with classical inference and characterize brain re-
sponses in a way that is more directly predicated on
what one is interested in. The motivation for Bayesian
approaches is reviewed and the theoretical back-
ground is presented in a way that relates to conven-
tional methods, in particular restricted maximum
likelihood (ReML). This paper is a technical and theo-
retical prelude to subsequent papers that deal with
applications of the theory to a range of important is-
sues in neuroimaging. These issues include; (i) Esti-
mating nonsphericity or variance components in fMRI
time-series that can arise from serial correlations
within subject, or are induced by multisubject (i.e.,
hierarchical) studies. (ii) Spatiotemporal Bayesian
models for imaging data, in which voxels-specific ef-
fects are constrained by responses in other voxels. (iii)
Bayesian estimation of nonlinear models of hemody-
namic responses and (iv) principled ways of mixing
structural and functional priors in EEG source recon-
struction. Although diverse, all these estimation prob-
lems are accommodated by the PEB framework de-
scribed in this paper. © 2002 Elsevier Science (USA)
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gorithm; ReML; Bayesian inference; hierarchical
models.
465
1. INTRODUCTION

Since its inception, about ten years ago, statistical
parametric mapping (SPM) has proved useful for char-
acterizing neuroimaging data sequences. However,
SPM is limited because it is based on classical infer-
ence procedures. In this paper we introduce a more
general framework, that places SPM in a broader con-
text and points to alternative ways of characterizing
and making inferences about regionally specific effects
in neuroimaging. In particular we formulate the pro-
cedures used in conventional data analysis in terms of
hierarchical linear models and establish the connection
between classical inference and empirical Bayesian in-
ference through covariance component estimation.
This estimation is based on an expectation maximiza-
tion or EM algorithm.

Statistical parametric mapping entails the use of the
general linear model and classical statistics, under
parametric assumptions, to create a statistic (usually
the T statistic) at each voxel. Inferences about region-
ally specific effects are based on the ensuing image of T
statistics, the SPM{T}. The requisite distributional ap-
proximations for the peak height, or spatial extent, of
voxel clusters, surviving a specified threshold, are de-
rived using Gaussian random field theory. Random
field theory enables the use of classical inference pro-
cedures, and the latitude afforded by the general linear
model, to give a powerful and flexible approach to con-
tinuous spatially extended data. It does so by protect-
ing against family-wise false positives over all the vox-
els that constitute a search volume; i.e., it provides a
way of adjusting the P values, in the same way that a
Bonferroni correction does for discrete data (Worsley,
1994; Friston et al., 1995).

Despite its success statistical parametric mapping
has a number of fundamental limitations. In SPM the
P value, ascribed to a particular effect, does not reflect
the likelihood that the effect is present but simply the
probability of getting the observed data in the effect’s
absence. If sufficiently small, this P value can be used
to reject the null hypothesis that the effect is negligi-
ble. There are several shortcomings of this classical
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approach. Firstly, one can never reject the alternate
hypothesis (i.e., say that an activation has not oc-
curred) because the probability that an effect is exactly
zero is itself zero. This is problematic, for example, in
trying to establish double dissociations or indeed func-
tional segregation; one can never say one area re-
sponds to color but not motion and another responds to
motion but not color. Second, because the probability of
an effect being zero is vanishingly small, given enough
scans or subjects one can always demonstrate a signif-
icant effect at every voxel. This fallacy of classical
inference is becoming relevant practically, with the
thousands of scans entering into some fixed-effect anal-
yses of fMRI data. The issue here is that a trivially
small activation can be declared significant if there are
sufficient degrees of freedom to render the variability
of the activation’s estimate small enough. A third prob-
lem, that is specific to SPM, is the correction or adjust-
ment applied to the P values to resolve the multiple
comparison problem. This has the somewhat nonsen-
sical effect of changing the inference about one part of
the brain in a way that is contingent on whether an-
other part is examined. Put simply, the threshold in-
creases with the search volume, rendering inference
very sensitive to what that inference encompasses.
Clearly the probability that any voxel has activated
does not change with the search volume and yet the
classical P value does.

All these problems would be eschewed by using the
probability that a voxel had activated, or indeed its
activation was greater than some threshold. This sort
of inference is precluded by classical approaches, which
simply give the likelihood of getting the data, given no
activation. What one would really like is the probabil-
ity distribution of the activation given the data. This is
the posterior probability used in Bayesian inference.
The posterior distribution requires both the likelihood,
afforded by assumptions about the distribution of er-
rors, and the prior probability of activation. These pri-
ors can enter as known values or can be estimated from
the data, provided we have observed multiple in-
stances of the effect we are interested in. The latter is
referred to as empirical Bayes. A key point here is that
in many situations we do assess repeatedly the same
effect over different subjects, or indeed different voxels,
and are in a position to adopt an empirical Bayesian
approach. This paper describes one such approach.

In contradistinction to other proposals, we are not
suggesting a novel way of analyzing neuroimaging
data. The use of a Bayesian formalism in special mod-
els for fMRI data has been usefully explored elsewhere,
e.g., spatiotemporal Markov field models, Descombes et
al., 1998; and mixture models, Everitt and Bullmore,
1999. See also the compelling work of Hartvig and
Jensen (2000) that combines both these approaches
and Højen-Sørensen et al. (2000) who focus on tempo-
ral aspects with hidden Markov models. Generally

these approaches assume that voxels are either active
or not and use the data to infer their status. Because of
this underlying assumption, there is little connection
with conventional models that allow for continuous or
graded hemodynamic responses. The aim of this paper
is to highlight the fact that the conventional models,
we use routinely, conform to hierarchical observation
models that can be treated in a Bayesian fashion. The
importance of this rests on: (i) the connection between
classical and Bayesian inference that ensues and (ii)
the potential to apply Bayesian procedures that are
overlooked from a classical perspective. For example,
random-effect analyses of fMRI data (Holmes and Fris-
ton, 1998) adopt two-level hierarchical models. In this
context, people generally focus on classical inference at
the second level, unaware that the same model can
support Bayesian inference at the first. Revisiting the
first level, within a Bayesian framework, provides for a
much better characterization of single-subject re-
sponses, both in terms of the estimated effects and the
nature of the inference. This example is developed in
Friston et al. (2002).

The aim of this paper is to describe hierarchical
observation models and establish the relationship be-
tween classical maximum likelihood (ML) and empiri-
cal Bayes estimators. Parametric empirical Bayes can
be formulated classically in terms of covariance com-
ponent estimation (e.g., within subject vs between sub-
ject contributions to error). The covariance component
formulation is important because it is ubiquitous in
fMRI. Different sources of variability in the data in-
duce nonsphericity that has to be estimated before any
inferences about an effect can be made. Important
sources of nonsphericity in fMRI include serial or tem-
poral correlations among the errors in single-subject
studies, or in multisubject studies, the differences be-
tween within and between-subject variability. These
issues are used in a companion paper (Friston et al.,
2002) to emphasize both the covariance component
estimation and Bayesian perspectives, in terms of: (i)
The difference between response estimates based on
classical maximum likelihood estimators and the con-
ditional means from a Bayesian approach. (ii) The re-
lationship between fixed- and random-effect analyses.
(iii) The specificity and sensitivity of Bayesian infer-
ences at the first level and, finally, (iii) the relative
importance of the number of scans and subjects for the
sensitivity of second-level inferences.

In Friston et al. (2002) we use the same theory to
elaborate spatiotemporal models for PET. Again this
employs two-level models but focuses on Bayesian in-
ference at the first level. It complements the previous
fMRI application by looking at spatial correlations in
data, using PET data to show how priors can be esti-
mated using observations over voxels at the second
level. The examples presented in the companion paper
(Friston et al., 2002) illustrate how posterior probabil-
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ity maps (PPMs) can be endowed with greater spatial
resolution than the equivalent SPMs and demonstrate
their relative immunity from the multiple comparison
problem.

1.1 Overview

In this paper we focus on theory and procedures. The
key points are reprised in a series of subsequent papers
where they are illustrated using real and simulated
data. This paper describes how the parameters and
hyperparameters of a hierarchical model can be esti-
mated jointly given some data. The distinction between
a parameter and a hyperparameter depends on the
context established by the estimation or inference in
question. Here parameters are quantities that deter-
mine the expected response, that is observed. Hyper-
parameters pertain to the probabilistic behavior of the
parameters. Perhaps the simplest example is provided
by a single-sample t test. The parameter of interest is
the true effect causing the observations to differ from
zero. The hyperparameter corresponds to the variance
of the observation error (usually denoted by �2). Note
that one can estimate the parameter, with the sample
mean, without knowing the hyperparameter. However,
if one wanted to make an inference about that estimate
it is necessary to know (or estimate using the residual
sum of squares) the hyperparameter. In this paper all
the hyperparameters are simply variances of different
quantities that cause the measured response (e.g.,
within-subject variance and between-subject variance).
The estimation procedure described below is Bayesian
in nature. Because the hyperparameters are estimated
from the data it represents an empirical Bayesian ap-
proach. However, the aim of this paper is to show the
close relationship between Bayesian and maximum
likelihood estimation implicit in conventional analyses
of imaging data, using the general linear model. Fur-
thermore, we want to place classical and Bayesian
inference within the same framework. In this way we
show that conventional analyses are special cases of
the more general PEB approach.

The first section of this paper introduces hierarchical
linear observation models that form the cornerstone of
the ensuring estimation procedures. These models are
then reviewed from the classical perspective of esti-
mating the model parameters using maximum likeli-
hood and statistical inference using the T statistic. The
same model is then considered in a Bayesian light to a
make an important point: The estimated error vari-
ances, at any level, play the role of priors on the vari-
ability of the parameters in the level below. At the
highest level, the ML and Bayes estimators are the
same, as are their standard error and conditional stan-
dard deviation. Both classical and Bayesian ap-
proaches rest upon covariance component estimation
for which we use an EM algorithm. This is described

briefly in the first section and presented in detail in the
appendix. The EM algorithm is related to that de-
scribed in Dempster et al. (1981) but extended to cover
hierarchical models with any number of levels. The
final section addresses Bayesian inference in classical
terms of sensitivity and specificity. To do this we “con-
vert” Bayesian inference into a classical one by thresh-
olding the posterior probability to label a region as
“activated” or not. This device opens up some interest-
ing questions that are especially relevant to neuroim-
aging: in classical approaches the same threshold is
applied to all voxels in a SPM, to ensure uniform spec-
ificity over the brain. Thresholded PPMs, on the other
hand, adapt their specificity according to the behavior
of local error terms, engendering a uniform confidence
in activations of a given size. This complementary as-
pect of SPMs and PPMs highlights the relative utility
of both approaches in making inferences about regional
responses.

For an introduction to EM algorithms in generalized
linear models, see Fahrmeir and Tutz (1994). This text
provides an exposition of EM algorithms and PEB in
linear models, usefully relating EM to classical meth-
ods (e.g., ReML, p. 225). For an introduction to Bayes-
ian statistics see Lee (1997). This text adopts a more
explicit Bayesian perspective and again usually con-
nects empirical Bayes with classical approaches, e.g.,
the Stein “Shrinkage” estimator and empirical Bayes
estimators used below (p. 232). In most standard texts
the hierarchical models considered in the next section
are referred to as random effects models.

2. THEORY

2.1 Hierarchical Linear Observation Models

In this paper we deal with hierarchical linear obser-
vation models of the form

y � X �1�� �1� � � �1�

� �1� � X �2�� �2� � � �2�

(1)···
� �n�1� � X �n�� �n� � � �n�

under Gaussian assumptions about the errors �(i) �
N{0, C�

(i)}. y is the response variable, usually observed
both within units over time and over several units (e.g.,
subject or voxels). X(i) are specified [design] matrices
containing explanatory variables or constraints on the
parameters �(i�1) of the level below. if the hierarchical
model has only one level it reduces to the familiar
general linear model employed in conventional data
analysis. Two-level models will be familiar to readers
who use mixed or random-effect analyses. In this in-
stance the first-level design matrix models the activa-
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tion effects, over scans within subjects, in a subject-
separable fashion (i.e., in partitions constituting the
blocks of a block diagonal matrix). The second-level
design matrix models the subject-specific effects over
subjects. Usually, but not necessarily, design matrices
at all levels are block diagonal matrices with each
partition modelling the observations in each unit at
that level (e.g., session, subject, or group).

X �i� � �
X 1

�i� 0 · · · 0

0 X 2
�i�

···
· · ·

0 X j
�i�
� (2)

Some examples are shown in Fig. 1 (these examples are
used in the empirical analyses of Friston et al., 2002,
Section 2). The design matrix at any level has as many

rows as the number of columns in the design matrix of
the level below. One can envisage three-level models,
which embody activation effects in scans modeled for
each session, effects expressed in each session modeled
for each subject and finally effects over subjects.

The Gaussian or parametric assumptions implicit in
these models imply that all the random sources of
variability, in the observed response variable, have a
Gaussian distribution. This is appropriate for most
models in neuroimaging and makes the relationship
between classical approaches and Bayesian treatments
(that can be generalized to non-Gaussian densities)
much more transparent. To ensure valid inference this
assumption must not be violated substantially, espe-
cially for high-level random effects (e.g., by bimodal
distribution of responses over subjects in two-level
models).

Technically, models that conform to (1) fall into the
class of conditionally independent hierarchical models
when the response variables and parameters are inde-
pendent across units, conditionally on the hyperpa-
rameters controlling the error terms (Kass and Steffey,
1989). These models are also called parametric empir-
ical Bayes (PEB) models because the obvious interpre-
tation of the higher-level densities as priors led to the
development of PEB methodology (Efron and Morris,
1973). Although the procedures considered in this pa-
per accommodate general models, that are not condi-
tionally independent, we refer to the Bayesian proce-
dures below as PEB because the motivation is identical
and most of the examples assume conditional indepen-
dence. Having posited a model with a hierarchical
form, the aim is to estimate its parameters and make
some inferences about these estimates using their es-
timated variability, or more generally their probability
distribution. In classical inference one is, usually, only
interested in inference about the parameters at the
highest level to which the model is specified. In a
Bayesian context the highest level is regarded as pro-
viding constraints or empirical priors that enable pos-
terior inferences about the parameters in lower levels.
Identifying the system of equations in (1) can proceed
under two perspectives that are formally identical; a
classical statistical perspective and a Bayesian one.

After recursive substitution, to eliminate all but the
final level parameters, (1) can be written in an alter-
native form

y � � �1� � X �1�� �2� � . . . � X �1� . . . X �n�1�� �n�

� X �1� . . . X �n�� �n�
(3)

In this nonhierarchical form the components of the
response variable comprise linearly separable contri-
butions from all levels. Those components that embody
error terms are referred to as random effects where the

FIG. 1. Schematic showing the form of the design matrices in a
two-level model and how the hierarchical form (upper panel) can be
reduced to a nonhierarchical form (lower panel). The design matrices
are shown in image format with an arbitrary color scale. The re-
sponse variable, parameters, and error terms are depicted as plots.
In this example there are four subjects or units observed at the first
level. Each subject’s response is modeled with the same three effects,
one of these being a constant term. These design matrices are part of
those used in Friston et al. (2002) to generate simulated fMRI data
and are based on the design matrices used in the subsequent empir-
ical event-related fMRI analyses.
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last-level parameters enter as fixed effects. The covari-
ance partitioning implied by (3) is

E�yy T� � C �
�1�

error

� . . . � X �1� . . . X �i�1�C �
�i�X �i�1�T . . . X �1�T

ith-level random effects

� . . . � X �1� . . . X �n�� �n�� �n�TX �n�T . . . X �1�T

fixed effects

,
(4)

where C�
(i) � Cov{�(i)}. If only one level is specified the

random effects vanish and a fixed-effect analysis en-
sues. If n is greater than one, the analysis corresponds
to a random-effect analysis (or more exactly a mixed-
effect analysis that includes random terms). (3) can be
interpreted in two ways that form, respectively, the
basis for a classical

y � X̃� �n� � �̃

X̃ � X �1�X �2� . . . X �n� (5)

�̃ � � �1� � X �1�� �2� � . . . � X �1�X �2� . . . X �n�1�� �n�

and Bayesian estimation

y � X� � � �1�

X � �X �1�, . . . , X �1�X �2� . . . X �n�1�, X �1�X �2� . . . X �n�	

� � �
� �2�

···
� �n�

� �n�

� .

(6)

In the first, classical formulation (5) the random effects
are lumped together and treated as a composite error,
rendering the last-level parameters the only ones to
appear explicitly. Inferences about nth level parame-
ters are obtained by simply specifying the model to the
order required. In contradistinction, the second formu-
lation (6) treats the error terms as parameters, so that
� comprises the errors at all but the first-level and the
final-level parameters. Here we have effectively col-
lapsed the hierarchical model into a single level by
treating the error terms as parameters (see Fig. 1 for a
graphical depiction).

2.2 A Classical Perspective

From a classical perceptive (5) represents an obser-
vation model with response variable y, design matrix X̃
and parameters �(n). The objective is to estimate these

parameters and make some inference about how large
they are based upon an estimate of their standard
error. Classically, estimation proceeds using the max-
imum likelihood (ML) estimator of the final-level pa-
rameters. Under our model assumptions this is the
Gauss–Markov estimator (see Section 2.3).

�ML � My
(7)

M � �X̃ TC �̃
�1X̃� �1X̃ TC �̃

�1,

where M is an estimator-forming matrix that projects
the data onto the estimate. Inferences about this esti-
mate are based upon its covariance, against which any
contrast (i.e., linear compound specified by the contrast
weight vector c) of the estimates can be compared using
the T statistic

T � c T�ML/�c TCov��ML�c, (8)

where, from Eqs. (5) and (7),

Cov��ML� � MC �̃M T � �X̃ TC �̃
�1X̃� �1

(9)C �̃ � C �
�1� � X �1�C �

�2�X �1�T . . .

� X �1� . . . X �n�1�C �
�n�X �n�1�T . . . X �1�T.

The covariance of the ML estimator represents a mix-
ture of covariances offered up to the highest level by
the error at all previous levels. To implement this
classical procedure we need the covariance of the com-
posite errors, from all levels, projected down the hier-
archy onto the response variable or observation space
C �̃ � Cov{�̃}. In other words we need the error covari-
ance components of the model. In fact to proceed, in the
general case, one has to turn to the second formulation
(6) and some iterative procedure to estimate these co-
variance components, in our case an EM algorithm.
This dependence, on the same procedures used by PEB
methods, reflects the underlying equivalence between
classical and empirical Bayes methods.

There are special cases where one does not need to
resort to iterative covariance component estimation.
For example, single-level models. With balanced de-
signs, where X1

(i) � Xj
(i) for all i and j, one can replace the

response variable with the ML estimates at the penul-
timate level and proceed as if one had a single-level
model. This is the trick harnessed by multistage im-
plementations of random-effect analyses (Holmes and
Friston, 1998). Although the ensuing variance estima-
tor is not the same as Eq. (9), its expectation is.

In summary, parameter estimation and inference, in
hierarchical models, can proceed given estimates of the
appropriate covariance components. The reason for in-
troducing inference based on the ML estimate is to
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motivate the importance of covariance component es-
timation. In the next section we take a Bayesian ap-
proach to the same issue.

2.3 A Bayesian Perspective

Bayesian inference is based on the conditional prob-
ability of the parameters given the data p(�(i)�y). Under
the assumptions above, this posterior density is Gauss-
ian and the problem reduces the finding its first two
moments, the conditional mean ���y

(i) and conditional
covariance C��y

(i) . These posterior or conditional distribu-
tions can be determined for all levels enabling, in con-
tradistinction to classical approaches, inferences at
any level using the same hierarchical model. Given the
posterior density we can work out the maximum a
posteriori (MAP) estimate of the parameters (a point
estimator equivalent to ���y

(i) for the linear systems con-
sidered here) or the probability that the parameters
exceed some specified value. Consider (1) from a Bayes-
ian point of view. Here level i can be thought of as
providing prior constraints on the expectation and co-
variances of the parameters below

E�� �i�1�� � � �
�i�1� � X �i�� �i�

(10)
Cov�� �i�1�� � C �

�i�1� � C �
�i�.

In other words the parameters at level i play the role of
supraordinate parameters for level i � 1 that control
the prior expectation under the constraints specified by
X(i). Similarly the prior covariances are simply specified
by the error covariances of the level above. For exam-
ple, given several subjects we can use information
about the distribution of activations, over subjects, to
inform an estimate pertaining to any single subject. In
this case the between-subject variability, from the sec-
ond level, enters as a prior on the parameters of the
first level. The general idea is that in many instances
we measure the same effect repeatedly in different
contexts. The fact that we have some handle on this
effect’s inherent variability means that the estimate
for a single instance can be constrained by knowledge
about others. At the final level we can treat the param-
eters as; (i) unknown, in which case their priors are
flat1 (c.f. fixed effects) giving an empirical Bayesian
approach, or (ii) known. In the latter case the connec-
tion with the classical formulation is lost because there
is nothing to make an inference about, at the final level.

The objective is to estimate the conditional means
and covariances such that the parameters at lower
levels can be estimated in a way that harnesses the

information available from higher levels. All the infor-
mation we require is contained in the conditional mean
and covariance of � from (6). From Bayes rule the
posterior probability is proportional to the likelihood of
obtaining the data, conditional on �, times the prior
probability of �,

p���y� 
 p�y���p���, (11)

where the Gaussian priors p(� ) are specified in terms of
their expectation and covariance

�� � E��� � �
0
···0

� �
�n�� ,

C� � Cov��� � �
C �

�2� · · · 0 0
···

· · ·
···

···
0 · · · C �

�n� 0

0 · · · 0 C �
�n�
� ,

�C �
�n� � � unknown

C�
�n� � 0 known .

(12)

Under Gaussian assumptions the likelihood and priors
are given by

p�y��� 
 exp��
1

2
�X� � y�TC �

�1��1�X� � y��
p��� 
 exp��

1

2
�� � ���

TC �
�1�� � ���� .

(13)

Substituting Eq. (13) into Eq. (11) gives a posterior
density with a Gaussian form

p���y� 
 exp��
1

2
�� � ���y�

TC ��y
�1�� � ���y�� ,

where

C��y � �X TC �
�1��1X � C �

�1� �1

(14)
���y � C��y�X TC �

�1��1y � C �
�1���.

Note that when we adopt an empirical Bayesian
scheme C�

(n) � � and C�
�1�� � 0 (see Eq. (12)). This

means we never have to specify the prior expectation at
the last level because it never appears explicitly in Eq.
(14).

The solution Eq. (14) is ubiquitous in the estimation
literature and is presented under various guises in

1 Flat or uniform priors denote a probability distribution that is
the same everywhere, reflecting a lack of any predilection for specific
values. In the limit of very high variance a Gaussian distribution
becomes flat.

470 FRISTON ET AL.



different contexts. If the priors are flat, i.e., C�
�1 � 0,

the expression for the conditional mean reduces to the
minimum variance linear estimator, referred to as the
Gauss–Markov estimator. The Gauss–Markov estima-
tor is identical to the ordinary least square (OLS) es-
timator that obtains after prewhitening. If the errors
are assumed to be independently and identically dis-
tributed, i.e., C�

(1) � I, then Eq. (14) reduces to the
ordinary least square estimator. With nonflat priors
the form of Eq. (14) is identical to that employed by
ridge regression and [weighted] minimum norm solu-
tions (e.g., Tikhonov and Arsenin, 1977) commonly
found in the inverse problem literature. The Bayesian
perspective is useful for minimum norm formulations
because it motivates plausible forms for the constraints
that can be interpreted in terms of priors.

Equation (14) can be expressed in an exactly equiv-
alent but more compact [Gauss–Markov] form by aug-
menting the design matrix with an identity matrix and
augmenting the data matrix with the prior expecta-
tions such that

C��y � �X TC �
�1X� �1

(15)
���y � C��y�X TC �

�1y� �,

where

y� � � y
��
�

X � �X
I �

C� � �C �
�1� 0

0 C�
� .

See Fig. 2 for schematic illustration of the linear model
implied by this augmentation. If the priors at the last
level are flat, the last-level prior expectation can be set
to zero. Note from (12) the remaining prior expecta-
tions are zero. This augmented form is computationally
more efficient to deal with and simplifies the exposition
of the EM algorithm. Furthermore, it highlights the
fact that a Bayesian scheme of this sort can be refor-
mulated as the simple weighted least square or ML
problem that (15) represents. The problem now reduces
to estimating the error covariances C� that determine
the weighting. This is exactly where we ended up in the
classical approach, namely reduction to a covariance
component estimation problem.

2.4 Covariance Component Estimation

In the previous sections the classical approach was
portrayed as using the error covariances to construct
an appropriate statistic. The PEB approach was de-

scribed as using the error covariances as priors to
estimate the conditional means and covariances, recall
from (10) that C�

(i�1) � C�
(i). Both approaches rest on

estimating the covariance components. This estima-
tion depends upon some parameterization of these
components; in this paper we use C�

(i) � ¥ �j
(i)Qj

(i) where
�j

(i) are some hyperparameters and Qj
(i) represent some

basis set for the covariance matrices. The bases can be
construed as constraints on the prior covariance struc-
tures in the same way as the design matrices X(i) spec-
ify constraints on the prior expectations. Qj

(i) embodies
the form of the jth covariance component at the ith
level and model different variances for different levels
and different forms of correlations within levels. The
bases or constraints Qj are chosen to model the sort of
nonsphericity anticipated. For example, they could
specify serial correlations within-subject (see Friston et
al., 2002, Section 1.1) or correlations among the errors
induced hierarchically by repeated measures over
subjects (Fig. 3 illustrates both these examples). We
will illustrate a number of forms for Qj in subsequent
papers.

One way of thinking about these covariance con-
straints is in terms of the Taylor expansion of any
function of hyperparameters that produced the actual
covariance structure

FIG. 2. As for Fig. 1 but here showing how the nonhierarchical
form is augmented so that the parameter estimates (that include
the error terms from all but the first level and the final level param-
eters) now appear in the model’s residuals. A Gauss–Markov esti-
mator will minimize these residuals in inverse proportion to their
prior variance.
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C��� �
�i� � 	 � j

�i�
	C�0� �

�i�

	� j
�i�

� . . . , (16)

where the basis set corresponds to the partial deriva-
tives of the covariances with respect to the hyperpa-
rameters. In variance component estimation the high-
order terms in Eq. (16) are generally zero. In this
context a linear decomposition of C�

(i) is a natural pa-
rameterization because the different sources of condi-
tionally independent variance add linearly and the
constraints can be specified directly in terms of these
components. There are other situations where a differ-
ent parameterization may be employed. For example, if
the constraints were implementing several indepen-
dent priors in a nonhierarchical model a more natural
expansion might be in terms of the precision C�

�1 � ¥

�jQj. The precision is simply the inverse of the covari-
ance matrix. Here Qj correspond to precisions specify-
ing the form of independent prior densities (see Appen-
dix A.3). However, in this paper, we deal only with

priors that are engendered by the observation model
that induces hierarchically organized, linearly mixed,
variance components. See Harville (1977, p. 322) for
comments on the usefulness of making the covariances
linear in the hyperparameters.

The augmented form of the covariance constraints
obtains by placing them in the appropriate partition in
relation to the augmented error covariance matrix

C� � C� � 	 �kQk

Qk �
	C�

	�k

(17)C� � �
0 · · · 0 0
···

· · ·
···

···
0 · · · 0 0

0 · · · 0 C �
�n�
� ,

Qk � �
0 · · · 0 0

· · ·
···

Q j
�i� ···

···
· · ·

0 · · · 0 0

0 · · · 0 0

� ,

where the subscript k runs over both levels and the
constraints within each level. Having framed the co-
variance estimation in terms of estimating hyperpa-
rameters, we can now use an EM algorithm to estimate
them.

2.5 The EM Algorithm

EM or expectation-maximization is a generic, itera-
tive parameter reestimation procedure that encom-
passes many iterative schemes devised to estimate
jointly the parameters and hyperparameters of a model
(Dempster et al., 1977, 1981). It was original intro-
duced as an iterative method to obtain maximum like-
lihood estimators in incomplete data situations (Hart-
ley, 1958) and was generalized by Dempster et al.
(1977). More recently, it has been formulated (e.g.,
Neal and Hinton, 1998) in a way that highlights its
elegant nature using a statistical mechanical interpre-
tation. This formulation considers the EM algorithm as
a coordinate descent on the free energy of a system.
The descent comprises an E-step, that finds the condi-
tional expectation of the parameters, holding the hy-
perparameters fixed and a M-step, which updates the
maximum likelihood estimate of the hyperparameters,
keeping the parameters fixed.

FIG. 3. Schematic illustrating the form of the covariance con-
straints. These can be thought of as “design matrices” for the second-
order behavior of the response variable and form a basis set for
estimating the error covariance and implicitly the prior covariances.
The hyperparameters scale the contribution of each constraint to the
error and prior covariances. These covariance constraints correspond
to the model described in the legend of Fig. 1. The top row depicts the
constraints on the errors. For each subject there are two constraints,
one modelling white (i.e., independent) errors and another serial
correlation with an AR(1) form. The second level constraints simply
reflect the fact that each of the three parameters estimated on the
basis of repeated measures at the first level has its own variance. The
estimated priors at each level are assembled with the prior for the
last level (here a flat prior) to completely specify the models priors
(lower panel). Constraints of this form are used in Friston et al.
(2002) during the simulation of serially correlated fMRI data-se-
quences and covariance component estimation using real data.
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In brief, EM algorithms provide a way to estimate
both the parameters and hyperparameters from the
data. In other words, it estimates the model parame-
ters when the exact densities of the observation error
and priors are unknown. For linear models under
Gaussian assumptions the EM algorithm returns: (i)
the posterior density of the parameters, in terms of
their expectation and covariance and (ii) the ML esti-
mates of the hyperparameters. The EM algorithm de-
scribed in the appendix (A.1) is depicted schematically
in Fig. 4. In the context of the linear observation mod-
els discussed in this paper, the EM scheme is the same
as using restricted maximum likelihood (ReML) esti-
mates of the hyperparameters, that properly account
for the loss of degrees of freedom, incurred by param-
eter estimation. The operational equivalence between
ReML and EM has been established for many years
(see Fahrmeir and Tutz, 1994, p. 226). However, it is
useful to understand their equivalence because EM
algorithms are usually employed to estimate the con-
ditional densities of model parameters when the hy-
perparameters of the likelihood and prior densities are
not known. In contradistinction, ReML is generally
used to estimate unknown variance components with-
out explicit reference to the parameters. In the hierar-
chical linear observation model considered here, the
unknown hyperparameters become variance compo-
nents which means they can be estimated using ReML.
It should be noted that EM algorithms are not re-
stricted to linear observation models or Gaussian pri-
ors, and have found diverse applications in the ma-
chine learning community. On the other hand ReML
was developed explicitly for linear observation models
under Gaussian assumptions.

In the appendix we have made an effort to reconcile
the free energy formulation based on statistical me-
chanics (Neal and Hinton, 1998) with classical ReML
(Harville, 1977). This might be relevant for under-
standing ReML in the context of extensions to the free
energy formulation, afforded by the use of hyperpriors
(priors on the hyperparameters). One key insight into
the EM approach is that the M-step returns, not simply
the ML estimate of the hyperparameters, but the
ReML that is properly restricted from a classical per-
spective.

Having computed the conditional mean and covari-
ances of the parameters we are now in a position to
make inferences about the effects at any level using
their posterior density.

2.6 Conditional and Classical Estimators

Given an estimate of the error covariance of the
augmented form C� and implicitly the priors that are
embedded in it, one can compute the conditional mean
and covariance at each level, where

���y � E���y� � �
� ��y

�2�

···
� ��y

�n�

� ��y
�n�

� ,

C��y � Cov���y� � �
C ��y

�2� · · ·

···
· · ·

C ��y
�n�

C ��y
�n�

� .

(18)

The conditional means for each level obtain recursively
with ���y

(i�1) � X(i)���y
(i) � ���y

(i). The conditional covariances
are simply C��y

(i�1) � C��y
(i) up to the penultimate level and

C��y
(n) at the final level. The conditional means represent

a better “collective” characterization of the model pa-
rameters than the equivalent ML estimates because
they are constrained by prior information from higher
levels (see discussion). At the last level the conditional
mean and ML estimators are the same. In PEB, infer-
ences about the parameters at subordinate levels are
enabled through having an estimate of their posterior
density. At the last level the posterior density reduces
to the likelihood distribution and inference reverts to a
classical one based on the standardized conditional
mean.

The standardized conditional mean, or a contrast of
means, is normalized by its conditional error. This
conditional error is larger than the standard error of
the conditional mean with equivalence when the priors
are flat (i.e., the conditional variability of a parameter
is greater than the estimate of its mean, except at the
last level where they are the same).

T �i� � c T� ��y
�i� /�c TC ��y

�i� c (19)

This statistic indicates the number of standard devia-
tions by which the mean of the conditional distribution
of the contrast deviates from zero. The critical thing,
we want to emphasize here, is that this statistic is
identical to the classical T statistic at the last level.
This means that the ML estimate and the conditional
mean are the same and the conditional covariance is
exactly the same as the covariance of the ML estimate.
The convergence of classical and Bayesian inference at
the last level rests on this identity and depends on
adopting an empirical Bayesian approach. This estab-
lishes a close connection between classical random ef-
fect analyses and hierarchical Bayesian models. How-
ever, the two approaches diverge if we consider that
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the real power of Bayesian inference lies in (i) coping
with incomplete data or unbalanced designs and (ii)
looking at the conditional or posterior distributions at

lower levels. The relationship between classical and
empirical Bayesian inference is developed in the next
section.

FIG. 4. Pseudo-code schematic showing the recursive structure of the EM algorithm (described in the appendix) as applied in the context
of conditionally independent hierarchical models. See main text for a full explanation. This formulation follows Harville (1977).
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3. CLASSICAL AND BAYESIAN INFERENCE
COMPARED

In this section we establish a relationship between
classical and Bayesian inference by applying Bayes in
a classical fashion. As noted above, at the last level,
PEB inference based on the standardized conditional
mean is identical to classical inference based on the T
statistic. In this context the ML estimators and the
conditional means are the same, as are the conditional
covariance and the covariance of the ML estimator.
What about inference at intermediate levels? Bayesian
inference is based on the conditional or posterior den-
sities (means and covariances) to give the posterior
probability that a compound of parameters (i.e., con-
trast) is greater than some value say 
. How does this
relate to the equivalent classical inference? Clearly the
essence of both inferences are quite distinct. The P
value in classical inference pertains to the probability
of getting the data under the null hypothesis, whereas
in Bayesian inference it is the probability that, given
the data, the contrast exceeds 
. However, we can
demonstrate the connection between Bayesian and
classical inference by taking a classical approach to the
former:

Consider the following heuristic argument. Take an
observation model with a single parameter and assume
that the error and prior covariance of the parameter are
known. Classical inference is characterized in terms of
specificity and sensitivity given the null � � 0 and alter-
nate � � A hypotheses. Specificity is the probability of
correctly accepting the null hypothesis and is 1 � �,
where � is a small false positive rate. The sensitivity � or
power is the probability of correctly rejecting the null
hypothesis. Classically, one rejects the null hypothesis
whenever the standardized ML estimator exceeds some
specified statistical threshold . The probability of this
happening is based on its distribution whose standard
deviation is given by Eq. (9).

� � 1 � ��
(20)

� � 1 � 
 �
A

��X TC �
�1X� �1� ,

where � is the cumulative density function of the
unit normal distribution. Note that one would use the
Student’s T distribution if the error covariance had to
be estimated but here we are treating the error vari-
ance as known. � and � are the probabilities that the
ML estimator divided by its standard deviation would
exceed , under the null and alternative hypotheses,
respectively. Note that this classical inference disre-
gards any priors on the parameter’s variance, assum-
ing them to be infinite. We can now pursue an identical
analysis for Bayesian inference. By thresholding the

posterior probability (or PPM) at a specified confidence
(say 95%) one could declare the surviving voxels as
showing a significant effect. This corresponds to
thresholding the conditional mean at 
 � u�C��y,
where u is a standard Gaussian deviate specifying the
level of confidence required. For example u � 1.64 for
95% confidence. One can regard u as a Bayesian
threshold. Although thresholding the posterior proba-
bility to declare a voxel “activated” is, of course, unnec-
essary (see discussion), it is used here as a device to
connect Bayesian and classical inference.

Under the null and alternate hypotheses the expec-
tation and variance of the conditional mean are

����y� � �0 null

C��yX TC �
�1XA alternate

Cov����y� � C� � C��yX TC �
�1XC��y,

from which it follows

� � 1 � �w�

� � 1 � 
w �
C��yX TC �

�1XA

�C�

�
(21)

� 1 � 
w �
A

��X TC �
�1X� �1�

w �



�C�

�
u�C��y

�C�

,

where C��y � C�, with equality when the priors are flat.
Comparing (20) and (21) reveals a fundamental differ-
ence and equivalence between classical and Bayesian
inference. The first thing to note is that the expressions
for power and sensitivity have exactly the same form,
such that if we chose a threshold u that gave the same
specificity as a classical test, then the same sensitivity
would ensue. In other words there is no magical in-
crease in power afforded by a Bayesian approach. The
classical approach is equally as sensitive given the
same specificity.

The essential difference emerges when we consider
that the relationship between the posterior probability
threshold u and the implied classical threshold w
depends on quantities (i.e., error and prior variance)
that vary over voxels. In a classical approach we
would choose some fixed threshold , say for all voxels
in a classical SPM. This ensures that the resulting
inference has the same specificity everywhere because
specificity depends on, and only on, . To emulate this
uniform specificity, when thresholding a PPM, we
would have to keep w constant. The critical thing here
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is that if the prior covariance or observation error
changes from voxel to voxel then either 
 or u must
change to maintain the same specificity. This means
that the nature of the inference changes fundamen-
tally, either in terms of the size of the inferred activa-
tion 
 or the confidence about that effect u. In short,
one can either have a test with uniform specificity (the
classical approach) or one can infer an effect of uniform
size with uniform confidence (the Bayesian approach)
but not both at the same time. For example, given a
confidence level determined by u, as the prior variance
gets smaller 
 must also decrease to maintain the same
specificity. Consequently, in some regions a classical
inference corresponds to a Bayesian inference about a
big effect and in other regions, where the estimate is
intrinsically less variable, the inference is about a
small effect. In the limit of estimates that are very
reliable the classical inference pertains to trivially
small effects. This is one of the fallacies of classical
inference alluded to in the introduction. There is noth-
ing statistically invalid about this: One might argue
that a very reliable activation that is exceedingly small
is interesting. However, in many contexts, including
neuroimaging, we are generally interested in activa-
tions of a nontrivial magnitude and this speaks to the
usefulness of Bayesian inference.

In summary, classical inference uses a criterion that
renders the specificity fixed. However, this is at the
price that the size of the effect, subtending the inferred
activation, will change from voxel to voxel or brain
region to brain region. By explicitly framing the infer-
ence in terms of the posterior probability, Bayesian
inference sacrifices a constant specificity to ensure the
inference is about the same thing at every voxel. Intu-
itively one can regard Bayesian inference as adjusting
the classical threshold according to the inherent vari-
ability of the effect one is interested in. In regions with
high prior variability the classical threshold is relaxed
to ensure type II errors are avoided. In this context the
classical specificity represents the lower bound for
Bayesian inference. In other words Bayesian inference
is generally much more specific than classical inference
(by several orders of magnitude in the empirical exam-
ples presented later) with equivalence when the prior
variance becomes very large.

In concluding it should be noted one does not usually
consider issues like specificity from a Bayesian point of
view (the null hypothesis plays no role because the real
world behavior is already specified by the priors). From
a purely Bayesian perspective the specificity and sen-
sitivity of an inference are meaningless because at no
point is an activation declared significant (correctly or
falsely). It is only when we impose a categorical clas-
sification (activated vs not activated) by thresholding
on the posterior probability that specificity and sensi-
tivity become an issue. Ideally, one would report ones
inferences in terms of the conditional density of the

activation at every voxel. This is generally impractical
in neuroimaging and the posterior probability (that is a
function of the conditional density and 
) becomes a
useful characterization. This characterization is, and
should be, the same irrespective of whether we have
analysed just one voxel or the entire brain. To thresh-
old the posterior probabilities is certainly tenable for
summary or display purposes, but to declare the sur-
viving voxels as “activated” represents a category er-
ror. This is because the inherent nature of the infer-
ence already specifies that the voxel is probably active
with a nontrivial probability of not being activated.
However, it is comforting to note that, by enforcing a
classical take on Bayesian inference, we do not have to
worry too much about the multiple comparison prob-
lem because the ensuing inference has an intrinsically
high specificity.

4. SUMMARY

This paper has introduced three key components
that play a role in the estimation of the linear models
considered, Bayesian estimation, hierarchical models
and the EM algorithm. The summary points below
attempt to clarify the relationships among these com-
ponents. It is worth while keeping in mind there are
essentially three sorts of estimation. (i) Fully Bayesian,
when the priors are known. (ii) Empirical Bayesian,
when the priors are unknown but they can be param-
eterized in terms of some hyperparameters that are
estimated from the data and (iii) maximum likelihood
estimation, when the priors are assumed to be flat. In
the final instance the ML estimators correspond to
weighted least square or minimum norm solutions. All
these procedures can be implemented with an EM al-
gorithm (see Fig. 5).

● Model estimation and inference are greatly en-
hanced by being able to make probabilistic statements
about the model parameters given the data, as opposed
to probabilistic statements about the data, under some
arbitrary assumptions about the parameters (e.g., the
null hypothesis), as afforded by classical statistics. The
former is predicated on the posterior or conditional
distribution of the parameters that is derived using
Bayes rule.

● Bayesian estimation and inference require priors.
If the priors are known then a fully Bayesian estima-
tion can proceed. In the absence of known priors there
may be constraints on the form of the priors that can be
harnessed using empirical Bayes estimates of the as-
sociated hyperparameters.

● A model with a hierarchical form embodies implicit
constraints on the form of the prior distributions. Hy-
perparameters that, in conjunction with these con-
straints, specify the priors can then be estimated with
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FIG. 5. Schematic showing the relationship among estimation schemes for linear observation models under parametric assumptions.
This figure highlights the universal role of the EM algorithm, showing that all conventional estimators can be cast in terms of, or
implemented with, the EM algorithm described in the legend of Fig. 4.
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PEB. In short, a hierarchical form for the observation
model enables an empirical Bayesian approach.

● If the observation model does not have a hierarchi-
cal structure then one knows nothing about the form of
the priors, and they are assumed to be flat. Bayesian
estimation with flat priors reduces to maximum likeli-
hood estimation.

● In the context of an empirical Bayesian approach
the priors at the last level are generally unknown and
enter as flat priors. This is equivalent to treating the
parameters at the last level as fixed effects (i.e., effects
with no intrinsic or random variability). One conse-
quence of this is that the conditional mean and the ML
estimate, at the last level, are identical.

● In terms of inference, at the last level, PEB and
classical approaches are formally identical. At subor-
dinate levels PEB can use the posterior densities to
provide for Bayesian inference about the effects of in-
terest. This is precluded from a classical perspective
because there are no priors.

● EM provides a generic framework in which fully
Bayes, PEB or ML estimation can proceed. Its critical
utility is the estimation of covariance components,
given some data, through the ReML estimation of hy-
perparameters mixing these covariance components.
An EM algorithm can be used to estimate the error
covariance in the context of known priors or to estimate
both the error and priors by embedding the latter in
the former. This embedding is achieved by augmenting
the design matrix and data (see Figs. 2 and 4).

● In the absence of priors, or hierarchical constraints
on their form, EM can be used in a ML setting to
estimate the error covariance to enable Gauss-Markov
estimates (see Fig. 5). These estimators are the opti-
mum weighted least square estimates in the sense they
have the minimum variance of all unbiased linear es-
timators. In the limiting case that the covariance con-
straints reduce to a single basis (synonymous with
known correlations or a single hyperparameter) the
EM algorithm converges in a single iteration and em-
ulates a classical sum of square estimation of error
variance. When this single basis is the identity matrix
(i.e., i.i.d. errors), an EM algorithm simply implements
an ordinary least square estimation.

In this paper we have reviewed hierarchical obser-
vation models of the sort commonly encountered in
neuroimaging. Their hierarchical nature induces dif-
ferent sources of variability in the observations at dif-
ferent levels (i.e., variance components) that can be
estimated using an EM algorithm. The use of an EM
algorithm, for variance component estimation, is not
limited to hierarchical models but finds a useful appli-
cation whenever nonsphericity of the errors is specified
with more than one hyperparameter (e.g., serial corre-
lations in fMRI). This application will be illustrated in
Friston et al. (2002). The critical thing, about hierar-

chical models, is that they conform to a Bayesian
scheme where variance estimates at higher levels can
be used as constraints on the estimation of effects at
lower levels. This perspective rests upon exactly the
same mathematics that pertains to variance compo-
nent estimation in nonhierarchical models but allows
one to frame the estimators in conditional or Bayesian
terms. An intuitive understanding of the conditional
estimators, at a given level, is that they “shrink” to-
wards their average, in proportion to the error variance
at that level, relative to their intrinsic variability (error
variance at the supraordinate level). See Lee (1997, p.
232) for a discussion of PEB and Stein “Shrinkage”
estimators. In what sense are these Bayes predictors a
better characterization of the model parameters than
the equivalent ML estimates? In other words, what are
the gains in using a shrinkage estimator? The follow-
ing, prepared by Keith Worsley (personal communica-
tion), addresses this question.

This is a topic that has been debated at great length
in the statistics literature and even in the popular
press. See the Scientific American article “Stein’s par-
adox in statistics” (Efron and Morris, 1977). The an-
swer depends on ones definition of “better,” or in tech-
nical terms, the loss function. If the aim is to find the
best predictor for a specific subject, then one can do no
better than the ML estimator for that subject. Here the
loss function is simply the squared difference between
the estimated and real effects for the subject in ques-
tion. Conversely, if the loss function is averaged over
subjects then the shrinkage estimator is best. This has
been neatly summarized in a discussion paper read
before the Royal Statistical Society entitled “Regres-
sion, prediction, and shrinkage” by Copas (1983). The
vote of thanks was given by Dunsmore, who said:

“Suppose I go to the doctor with some complaint and ask him to
predict the time y to remission. He will take some explanatory
measurements x and provide some prediction for y. What I am
interested in is a prediction for my x, not for any other x that
I might have had—but did not. Nor am I really interested in his
necessarily using a predictor which is “best” over all possible
x’s. Perhaps rather selfishly, but I believe justifiably, I want the
best predictor for my x. Does is necessarily follow that the best
predictor for my x should take the same form as for some other
x? Of course this can cause problems for the esteem of the
doctor or his friendly statistician. Because we are concerned
with actual observations the goodness or otherwise of the pre-
diction will eventually become apparent. In this case the stat-
istician will not be able to hide behind the screen provided by
averaging over all possible futures x’s.”

Copas then replied:

“Dr. Dunsmore raises two general points that repay careful
thought. Firstly, he questions the assumption made at the very
start of the paper that predictions are to be judged in the
context of a population of future x’s and not just at some specific
x. To pursue the analogy of the doctor and the patient, all I can
say is that the paper is written from the doctor’s point of view
and not from the patients! No doubt the doctor will feel he is
doing a better job if he cures 95% of patients rather than only
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90%, even though a particular patient (Dr. Dunsmore) might do
better in the latter situation than the former. As explained in
the paper, preshrunk predictors do better than least squares
for most x’s at the expense of doing worse at a minority of x’s.
Perhaps if we think our symptoms are unusual we should seek
a consultant who is prepared to view our complaint as an
individual research problem rather than rely on the blunt in-
strument of conventional wisdom.”

The implication for Bayesian estimators, in the con-
text of neuroimaging, is that they are the best for each
subject [or voxel] on average over subjects [or voxels].
In this sense Bayesian or conditional estimates of in-
dividual effects are only better on average, over the
individual effects estimated. The issues, framed by
Keith Worsley above, speak to the important consider-
ation that Bayesian estimates, of the sort discussed in
this paper, are only “better” in collective sense. One
example of this collective context is presented in Fris-
ton et al. (2002), where between-voxel effects are used
to “shrink” within-voxel estimates that are then re-
ported together in a PPM.

The estimators and inference from a PEB approach
do not inherently increase the sensitivity or specificity
of the analysis. The most appropriate way to do this
would be to simply increase sample size. PEB method-
ology can be better regarded as providing a set of
estimates or predictors that are internally consistent
within and over hierarchies of the observation model.
Furthermore, they enable Bayesian inference (com-
ments about the likelihood of an effect given the data)
that complement classical inference (comments about
the likelihood of the data). Bayesian inference does not
necessarily decide whether an activation is present or
not, it simply estimates the probability of an activa-
tion, specified in terms of the size of the effect. Con-
versely, classical inference is predicated on a decision
(is the null hypothesis true or is the size of the effect
different from zero?). The product of classical inference
is a decision or declaration, which induces a sensitivity
and specificity of the inference. In this paper we have
used classical notions of sensitivity and specificity to
link the two sorts of inference by thresholding the
posterior probability. However, one is not compelled to
threshold maps of posterior probability. Indeed, one of
the motivations, behind Bayesian treatments, is to es-
chew the difficult compromise between sensitivity and
specificity engendered by classical inference in neuro-
imaging.

APPENDIX

A.1 The EM Algorithm

This appendix describes the EM algorithm using a
statistical mechanics perspective adopted by the ma-
chine learning community (Neal and Hinton, 1998).
The second section of the appendix connects this for-
mulation with classical ReML methods. We show that,

in the context of linear observation models, the nega-
tive free energy is the same as the objective function
maximized in classical schemes like restricted maxi-
mum likelihood (ReML).

The EM algorithm is ubiquitous in the sense that
many estimation procedures can be formulated as
such, from mixture models through to factor analysis.
Its objective is to maximize the likelihood of the ob-
served data p(y��), conditional on some hyperparam-
eters, in the presence of unobserved variables or pa-
rameters �. This is equivalent to maximizing the log
likelihood

ln p�y��� � ln � p��, y���d� � F�q, ��

� � q���ln p��, y���d� � � q���ln q���d�

(A.1)

where q(� ) is any distribution over the model parame-
ters (Neal and Hinton, 1998). Equation (A.1) rests on
Jensen’s inequality that follows from the concavity of
the log function, which renders the log of an integral
greater than the integral of the log. F corresponds to
the negative free energy in statistical thermodynamics
and comprises two terms, related to the energy (first
term) and entropy (second term). The EM algorithm
alternates between maximizing F, and implicitly the
likelihood of the data, with respect to the distribution
q(� ) and the hyperparameters �, holding the other
fixed

E-step: q��� 4 arg max
q

F�q���, ��

M-step: � 4 arg max
�

F�q���, ��

This iterative alternation performs a co-ordinate as-
cent on F. It is easy to show that the maximum in the
E-step obtains when q(� ) � p(��y, �), at which point
(A.1) becomes an equality. The M-step finds the ML
estimate of the hyperparameters, i.e., the values of �
that maximize p(y��) by integrating p(�, y��) over the
parameters using the current estimate of their condi-
tional distribution. In short the E-step computes suffi-
cient statistics (in our case the conditional mean and
covariance) relating to the distribution of the unob-
served parameters to enable the M-step to optimize the
hyperparameters, in a maximum likelihood sense, us-
ing this distribution. These new hyperparameters re-
enter into the estimation of the conditional distribution
and so on until convergence.

The E-Step

In our hierarchical model, with Gaussian (i.e., para-
metric) assumptions, the E-step is trivial and corre-

479CLASSICAL AND BAYESIAN INFERENCE IN NEUROIMAGING



sponds to taking the conditional mean and covariance
according to (15). These are then used, with the data, to
estimate the hyperparameters of the covariance com-
ponents in the M-step.

The M-Step

Given that we can reduce the problem to estimating
the error covariances with the augmented expressions
for the conditional mean and covariance (15) we only
need to estimate the hyperparameters of the error
covariances (which contain the prior covariances).
Specifically, we require the hyperparameters that
maximize the first term in the expression for F
above. From (15)

log p��, y��� � �
1

2
ln�C��

�
1

2
�y� � X��TC �

�1�y� � X��

� const.

� q���ln p��, y���d� � �
1

2
ln�C�� �

1

2
r TC �

�1r

�
1

2
��� � ���y�

TX T

� C �
�1X�� � ���y�q � const.

� �
1

2
ln�C�� �

1

2
r TC �

�1r (A.2)

�
1

2
tr�C��yX TC �

�1X� � const.

� q���log q��� � �
1

2
ln�C��y� � const.

F �
1

2
ln�C �

�1� �
1

2
r TC �

�1r

�
1

2
tr�C��yX TC �

�1X�

�
1

2
ln�C��y� � const.

where the residuals r � y� � X���y. We now simply take
the derivatives of F with respect to the hyperparam-
eters and use some nonlinear search to find the maxi-
mum. Note that the second [entropy] term does not
depend on the hyperparameters. There is an interest-
ing intermediate derivative. From (A.2)

	F

	C �
�1

�
1

2
C� �

1

2
rr T �

1

2
XC��yX T (A.3)

Setting this derivative to zero (at the maximum of F)
requires

C���� � rr T � XC��yX T (A.4)

(c.f. Dempster et al. (1981) p. 350). Equation (A.4) says
that the error covariance estimate has two compo-
nents: that due to differences between the data ob-
served and predicted by the conditional expectation of
the parameters and another component due to the
variation of the parameters about their conditional
mean. More generally one can adopt a Fischer scoring
algorithm and update the hyperparameters �4 � � ��
using the first and expected second partial derivatives
of the negative free energy.

�� � H �1g

gi �
	F

	�i
� tr��

	F

	C �
�1

C �
�1QiC �

�1�
� �

1

2
tr�PQi� �

1

2
y� TP TQiPy�

(A.5)
	 2F

	� ij
2

�
	gi

	�j
�

1

2
tr�PQiPQj� � y� TPQiPQjPy�

Hij � E��
	2F

	� ij
2� �

1

2
tr�PQiPQj�

P � C �
�1 � C �

�1X� C��yX� TC �
�1

Fisher scoring corresponds to augmenting a simple
Newton-Raphson scheme by replacing the second de-
rivatives or “curvature” observed at the particular re-
sponse y with its expectation over realizations of the
data. The ensuing matrix H is referred to as Fisher’s
Information matrix.2 The computation of the gradient
vector g can be made computationally efficient by cap-
italizing on any sparsity structure in the constraints
and by bracketing the multiplications appropriately.
(A.5) is general in that it accommodates almost any
form for the covariance constraints through a Taylor

2 The derivation of the expression for the Information matrix uses
standard linear algebra results and is most easily seen by: (i) differ-
entiating the form for g in (A.7) by noting

	P

	�j
� �PQjP

and (ii) taking the expectation, using �tr{PQiPyyTPQj}�q �
tr{PQiPC�PQj} � tr{PQiPQj}.
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expansion of C{�}�. In many instances the bases can be
constructed so that they do not “overlap” or interact
through the design matrix, i.e., QiPQj � 0 and esti-
mates of the hyperparameters can be based directly on
the first partial derivatives in (A.5) by solving for g � 0.
For certain forms of C(�)� the hyperparameters can be
calculated very simply.3 However, we work with the
general solution above that encompasses all these spe-
cial cases.

Once the hyperparameters have been updated they
enter into (19) to give the new covariance estimate
which, in turn enters (15) to give the new conditional
estimates which re-enter into (A.5) to give new updates
until convergence. A pseudo-code illustration of the
complete algorithm is presented in Fig. 4. Note that in
this implementation one is effectively performing a
single Fisher scoring iteration for each M-step. One
could postpone each E-step until this search converged
but a single step is sufficient to perform a co-ordinate
ascent on F. Technically this renders (A.5) a general-
ized EM or GEM algorithm.

It should be noted that the search for the maxi-
mum of F does not have to employ a Fisher scoring
scheme or indeed the parameterization of C � used in
(18). Other search procedures such as quasi-Newton
searches are commonly employed (Fahrmeir and
Tutz, 1994). Harville (1977) originally considered
Newton-Raphson and scoring algorithms, and Laird
and Ware (1982) recommend several versions of the
EM algorithm. One limitation of the hyper-parame-
terization described above is that does not guarantee
that C � is positive definite. This is because the hy-
perparameters can take negative values with ex-
treme degrees of nonsphericity. The EM algorithm
employed by multistat (Worsley et al., 2002), for
variance component estimation in multi-subject
fMRI studies, uses a slower but more stable EM
algorithm that ensures positive definite covariance
estimates. The common aspect of all these algo-
rithms is that they (explicitly or implicitly) maximize
F (or minimize free energy). As shown next, this is
equivalent to the method of restricted maximum
likelihood.

A.2. Relationship to ReML

ReML or restricted maximum likelihood was intro-
duced by Patterson and Thompson in 1971 as a tech-

nique for estimating variance components which ac-
counts for the loss in degrees of freedom that result
from estimating fixed effects (Harville, 1977). It is com-
monly employed in standard statistical packages (e.g.,
SPSS). Under the present model assumptions ReML is
formally identical to EM. One can regard ReML as
embedding the E-step into the M-step to provide a
single log-likelihood objective function: Substituting
the C��y � (XTC�

�1X)�1 from (15) into the expression for
the negative free energy (A.2) gives

F � �
1

2
ln�C�� �

1

2
r TC �

�1r �
1

2
ln�XTC �

�1X� � const.

(A.6)

which is the ReML objective function (see Harville,
1977, p. 325). Critically the derivatives of (A.6), with
respect to the hyperparameters, are exactly the same
as those given in (A.5).4 Operationally, (A.5) can be
rearranged to give a ReML scheme by removing any
explicit reference to the conditional covariance.

gi � �
1

2
tr�PQi� �

1

2
tr�PyyTP TQi�

Hij �
1

2
tr�PQiPQj� (A.7)

P � C �
�1 � C �

�1X�X TC �
�1X� �1X TC �

�1

These expressions are formally identical to those de-
scribed in Section 5 of Harville (1977, p. 326). Because
(A.7) does not depend explicitly on the conditional den-
sity, one could think of ReML as estimating the hyper-
parameters in a subspace that is restricted in the sense
that the estimates are conditionally independent of the
parameters. See Harville (1977) for a discussion of
expressions, comparable to the terms in (A.7) that are
easier to compute, for particular hyper-parameteriza-
tions of the variance components.

The particular form of (A.7) has a very useful appli-
cation when y is a multivariate data matrix and the
hyperparameters are the same for all columns (i.e.,
voxels). Here, irrespective of the voxel-specific param-
eters, the voxel-wide hyperparameters can be obtained
efficiently by iterating (A.7) using the sample covari-

3 Note that if there is only one hyperparameter then g � 0 can be
solved directly

tr�PQ� � y�PQPy� f � �
rTQ �1r

tr�R�

where C� � �Q and R � I � X(XTQ�1X)�1XTQ�1 is a residual forming
matrix. This is the expression used in classical schemes, given the
correlation matrix Q, to estimate the error covariance using the sum
of squared de-correlated residuals.

4 Note that

	 ln�XTC �
�1X�

	�i
� tr��XTC �

�1X� �1
	X TC �

�1X

	�i
�

� �tr�C��yX TC �
�1QiC �

�1X�

481CLASSICAL AND BAYESIAN INFERENCE IN NEUROIMAGING



ance matrix yyT. This is possible because the condi-
tional parameter estimates are not required in the
ReML formulation. This is used in the current devel-
opment version of the SPM software to estimate voxel-
wide nonsphericity.

A.3 Hyper-Parameterizing the Precision

In the forgoing we have parameterized the covari-
ances of the likelihood and prior densities. This is
natural when the priors become variance components
on augmenting hierarchical models. However, there
are other situations when the priors are more natu-
rally specified in terms of precisions, each precision
component Uj

(i) corresponding to the jth independent
prior specified for the ith level of the model. Following
augmentation we get

C �
�1 � U� � 	 �kUk

Uk �
	C �

�1

	�k

(A.8)U� � �
0 · · · 0 0
···

· · ·
···

···
0 · · · 0 0

0 · · · 0 C �
�n��1

� ,

Uk � �
0 · · · 0 0

· · ·
···

U j
�i� ···

···
· · ·

0 · · · 0 0

0 · · · 0 0

�
c.f. Equation (19). Notice that with this hyper-param-
eterization large values of the hyperparameters corre-
spond to high precision and a small variance compo-
nent contribution. The Fisher scoring scheme of (A.5)
now takes a slightly simpler form,

gi �
1

2
tr�OUi� �

1

2
r TUir

Hij �
1

2
tr�OUiOUj� (A.9)

O � C�PC�

that is most easily derived by noting Q � 	C�/	�i � �C�

� (	C�
�1/	�i) C� � �C�UiC� and substituting in (A.5).

This approach will be illustrated in a subsequent
paper that uses a simple version of (A.9) to find the
right mixture of structural and functional priors in the
EEG source reconstruction problem (Phillips et al., in
preparation). This application effectively solves the
problem of identifying the most appropriate regular-
ization hyperparameters using an empirical Bayesian
scheme.
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